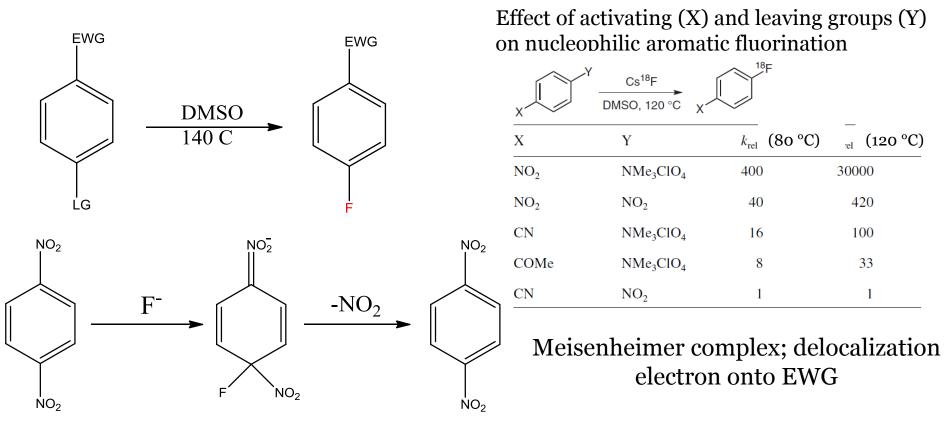


New F-18 Labeling Methods

Pei Yuin Keng Scholars Trained in Advanced Radiochemistry Technology

Outline

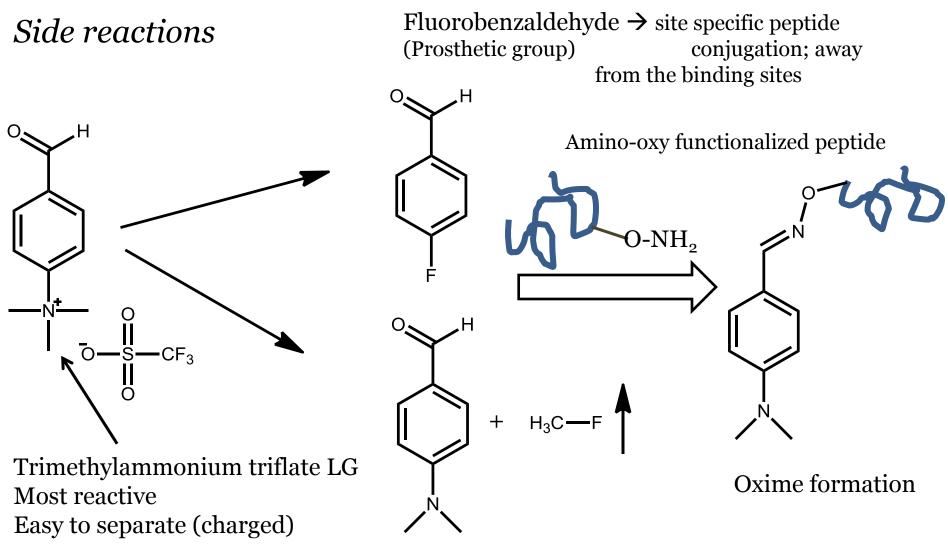
- 1. Nucleophilic aromatic substitution
- 2. Prosthetic group chemistry (labeling peptide and protein)
 - 1. Random substitution
 - 2. Site directed


3. New F18-Labeling Methodologies:

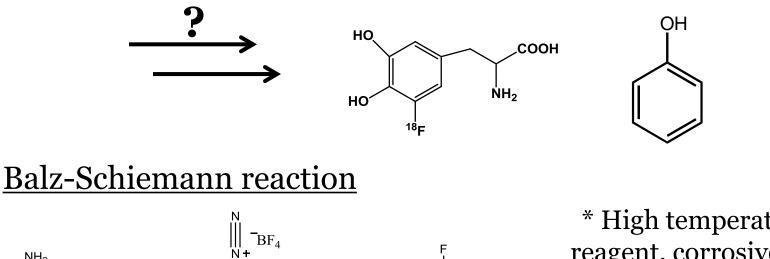
- 1. Protic solvent
- 2. Ionic liquid
- 3. Iodonium salts
- 4. Transition metal catalysis
- 5. Enzyme catalysis
- 6. Polymer supported chemistry

NUCLEOPHILIC AROMATIC SUBSTITUTION (S_NAR)

Precursor Requirements


(a) Activating effect: EWG: $3-NO_2 < 4-CH_3CO < 4-CN < 4-NO_2$

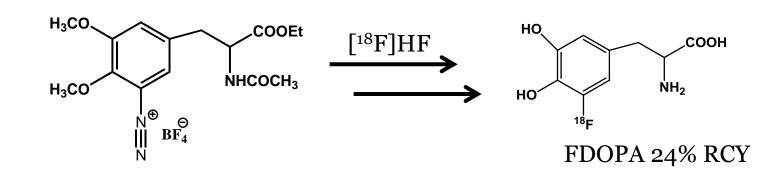
(b) Leaving group: $I < Br < Cl < F < NO_2 < N^+Me_3$ (C-F bond making is RLS. Polar effects favors addition step)


(c) Solvent effect: DMSO > DMAc (N,N,-dimethylacetamide) > sulfolane >> acetonitrile

Side Reactions in S_{NAr}

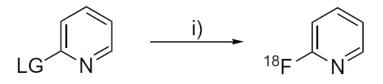
Li, X. et al. Bioconjugate Chem. 2008, 19, 1684-1688 Solin, O. et al. J Fluorine Chemistry, 2012, 143, 49-56

Nucleophilic Aromatic Substitution of substrate without EWG?



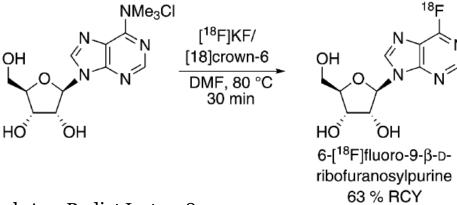
 NH_2

 HBF_4


NaNO₂

* High temperature, harsh reagent, corrosive, explosive Low yield ~ 2-15% RCY $+ N_2 + BF_3$ Only 1 F is from BF_A is transferred to arene

[¹⁸F]F-Nucleophilic *Heteroaromatic* Substitution


LUMO of pyridine at ortho and para position lower than benzene *No need activating group*

Coenen, H.H. 2007. Basic Fluorine-18 Labeling Methods

	150 °C	180 °C
LG	RCY (%)	RCY (%)
1	1	19
Cl	23	57
Br	25	87
NO ₂	92	89
$(CH_3)_3N^+CF_3SO_3^-$	90	92

Scheme 46. i) ¹⁸F]F⁻/K₂CO₃/K₂₂₂, DMSO

Irie, T. et al. App Radiat Isot. 1982. 33 445. Gouverneur, V. et al. Angew Chem Int Ed. 2012, 51, 2-14

 TABLE 2. Temperature dependence of the radiochemical yields of ¹⁸F-(IV)

Reaction temp. (°C)	Radiochemical yield (%) ¹
room temp	5566
50-60	68-75
80-90	0.4-1.4

¹ Yields from the reaction for 20 min of 15 μ mol of (II) with the solubilized K¹⁸F (1.2 μ mol) in DMF-CE solution before addition of (II).

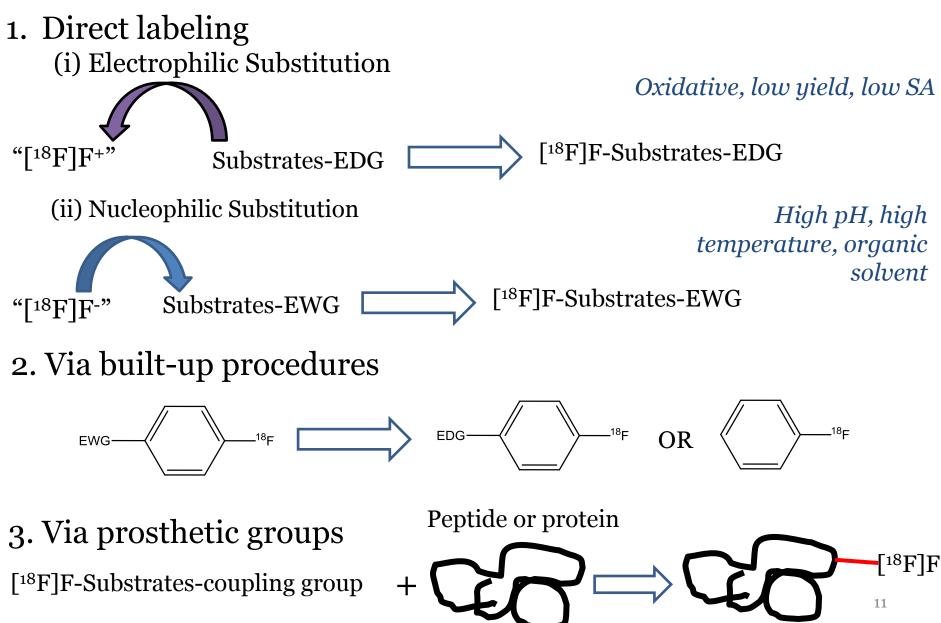
Summary Nucleophilic Substitution

- 1. Preferred method
- 2. High specific activity of [18F]F⁻ vs [18F]F₂ (1740 Ci/umole vs 0.1 Ci/umole)
- 3. Easy to handle (liquid vs gas)
- 4. [¹⁸F]F⁻ Can be transported and distributed to nearby imaging clinicic (Decentralized model of PET probe production)
- 5. S_N 2, leaving group, solvent, phase transfer catalyst and base
- 6. Side reactions, optimization
- 7. Activated substrate and good leaving group for $\mathbf{S}_{\mathrm{NAr}}$

PEPTIDE AND PROTEIN LABELING

Why label peptide and proteins?

<u>Features</u>


- Target tumor cell receptors
- Hormone receptor in cancerous cell
- Key regulators of cellular function and cell growth
- Peptide as PET traces- quantify apoptosis and angiogenic processes
- Multidendate characteristic→ Higher binding affinity, selectivity

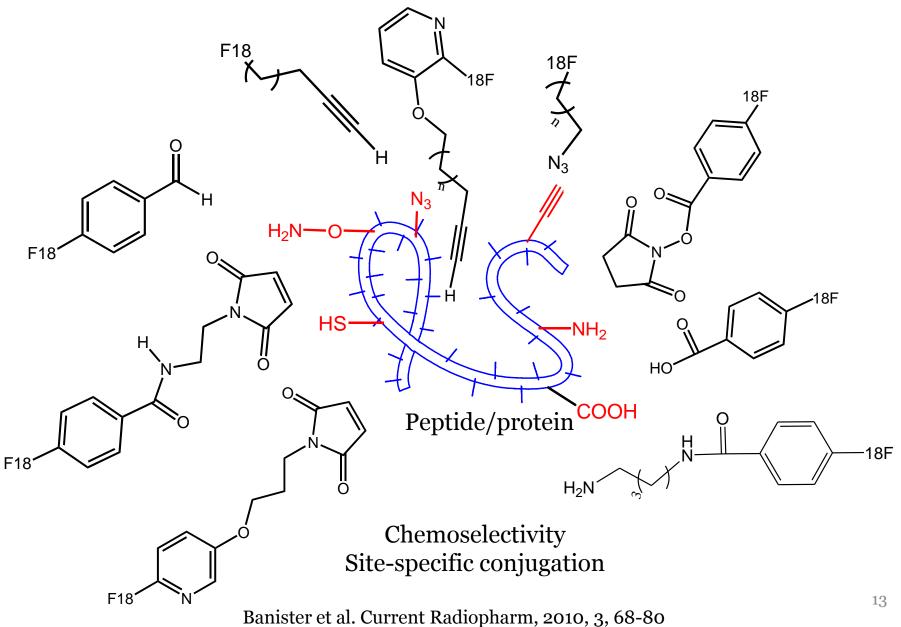
Why label with F18?

- Moderate half-life
- Low β^+ energy (lower radiation, short positron pathlengths (image resolution)
- High % of β^+ decay vs other radiometals (i.e.: Cu^{64} 18%, Ga^{68} 57\%, Y^{86} 33\%)

S.M. Okarvi. Eur J Nucl Med. 2001, 28, 929

How to label with Fluorine-18?

F18-Peptides and Proteins

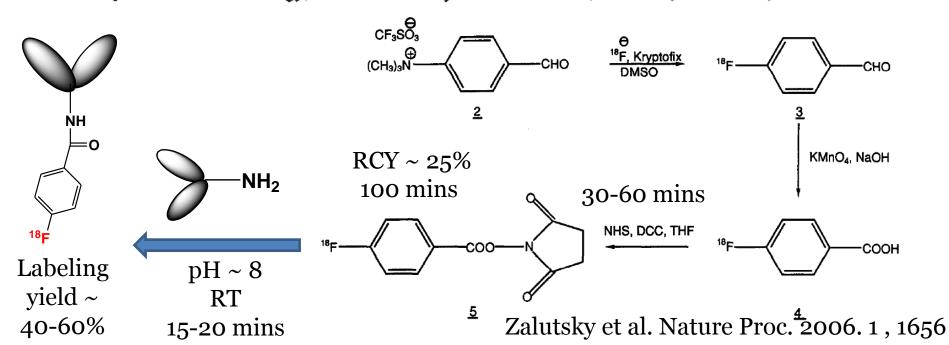

Prosthetic group and labeling

- 1. Possessed reactive coupling moieties: allow mild labeling conditions suitable for biomolecules
- 2. Temperatures: for peptide up to 100 C; for protein ~ RT
- 3. Mild pH : physiological pH for protein; wider range pH for peptide.
- 4. Does not disrupt binding affinity of peptide/proteins
- 5. In aqueous/buffer solution or alcoholic solution (peptide only).
- 6. Formation of desirable product at tracer level concentration
- 7. Negligible steric impairment upon labeling
- 8. High specific activity
- 9. High radiochemical yield

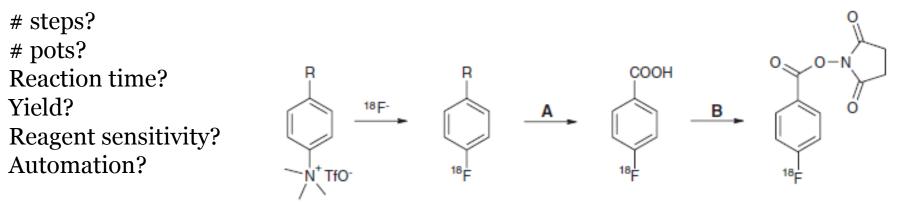
<u>2-types of labeling chemistry (choice of prosthetic group?)</u>

- 1. Random
- 2. Site specific **

Commonly used [18F]Prosthetic groups



Prosthetic group: Succinimydyl-4-fluorobenzoate


RANDOM LABELING AMINE REACTIVE

N-Succinimidyl 4-[¹⁸F] fluorobenzoate ([¹⁸F]SFB) Labeling Proteins with Fluorine-18 Using *N*-Succinimidyl 4-[¹⁸F]Fluorobenzoate *Nucl. Med. Biol.* Vol. 19, No. 3, pp. 275-281, 1992 GANESAN VAIDYANATHAN and MICHAEL R. ZALUTSKY*

Department of Radiology, Duke University Medical Center, Durham, NC 27710, U.S.A.

Improvement in [18F]SFB Synthesis

18F-SFB

R	# pots	Α	В	RCY ^a	Reference
-CHO -CHO -COOEt -COOEt -COO ^t Bu	3 2 1 1	KMnO4/NaOH/HCI KMnO4/NaOH/HCI NaOH/HCI Pr4NOH TFA	NHS/DCC DSC ^b TSTU ^c HSTU ^d TSTU	25% 51% 50–60% 43.8±4.6% 44–53%	Vaidyanathan and Zalutsky ⁷ Vaidyanathan and Zalutsky ^{8,9} Wester <i>et al.</i> ¹⁰ Tang <i>et al.</i> ¹¹ Wüst <i>et al.</i> ¹²
	$\langle \cdot \rangle$	TFA	DSC/DMAP	44%	Azarian <i>et al.</i> ¹³

^aTotal radiochemical yield, decay-corrected.

^bN,N'-discuccinimidyl carbonate.

^cO-(N-succinimidyl)-N,N,N',N'-tetramethyluronium tetrafluoroborate.

^dO-(N-Succinimidyl)-N,N,N',N'-tetramethyluronium hexafluorophosphate.

Glaser et al. J Label Compd Radiopharm. 2009, 52, 327

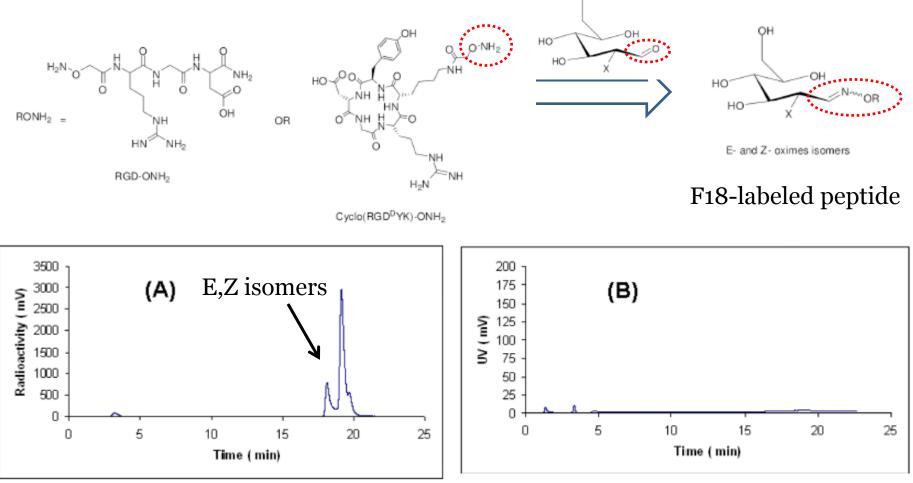
SITE-SPECIFIC LABELING AMINO-OXY REACTIVE

Prosthetic group: Aldehyde functional group

Oxime formation -Peptide H₂N¹ Н . NسO Peptide Benzaldehyde funct. Amino-oxy funct. Oxime bond Selective despite the (1) [¹⁸F]FDG as prosthetic group presence of other amino acid functionalities Reactive linear form OH OH Cyclic form HO HC acyclic form α-pyranose B-pyranose H₂N Amino-oxy functional peptide OH HO OH HO peptid peptic 18_C α- and β-pyranose E- and Z-oximes α- and β-furanose

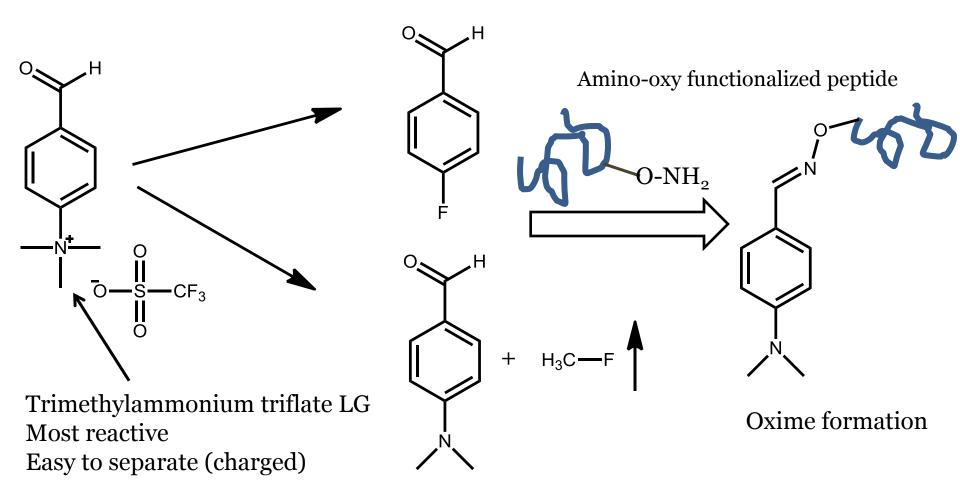
Scheme 8. Proposed product profile in [18F]FDG conjugations with peptide [30,51].

Solin, O. et al. J Fluorine Chemistry, 2012, 143, 49-56


A Novel Method for Direct site-specific Radiolabeling of Peptides

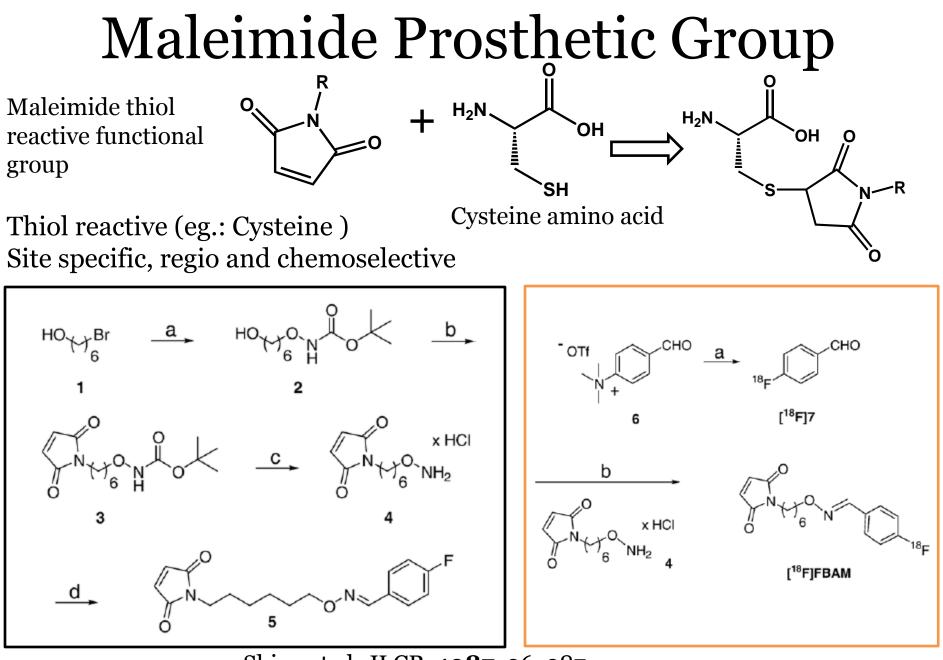
Using [¹⁸F]FDG

Bioconjug Chem. 2009 March ; 20(3): 432-436.


Mohammad Namavari[†], Zhen Cheng[†], Rong Zhang[‡], Abhijit De[†], Jelena Levi[†], Joshua K. Hoerner[‡], Shahriar S. Yaghoubi[†], Faisal A. Syud[‡], and Sanjiv S. Gambhir^{*,†}

[†]Molecular Imaging Program at Stanford (MIPS), Departments of Radiology and Bioengineering, Bio-X Program, Stanford University

[¹⁸F]Fluorobenzaldehyde


Fluorobenzaldehyde \rightarrow site specific conjugation conjugation; away from the binding sites, retain immunoreactivity of peptide/protein

Li, X. et al. Bioconjugate Chem. 2008, 19, 1684-1688 Solin, O. et al. J Fluorine Chemistry, 2012, 143, 49-56

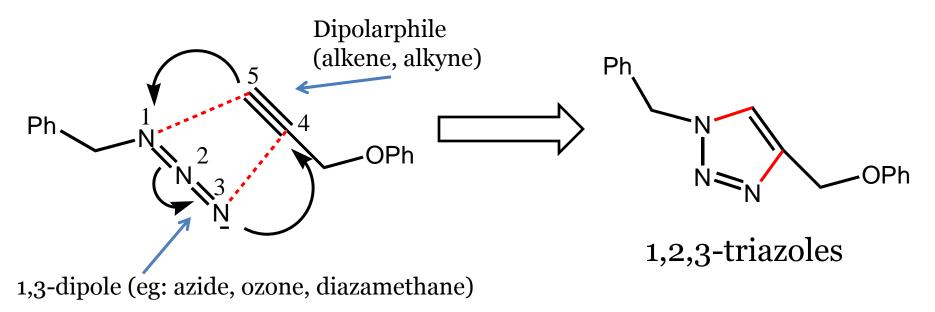
SITE SPECIFIC THIOL-REACTIVE

Prosthetic group: Maleimide

Shiue et al. JLCR. **1987**, 26, 287 Wuest et al. Nuc Med Biol. **2007**, 34, 5-15

SITE SPECIFIC CLICK CHEMISTRY

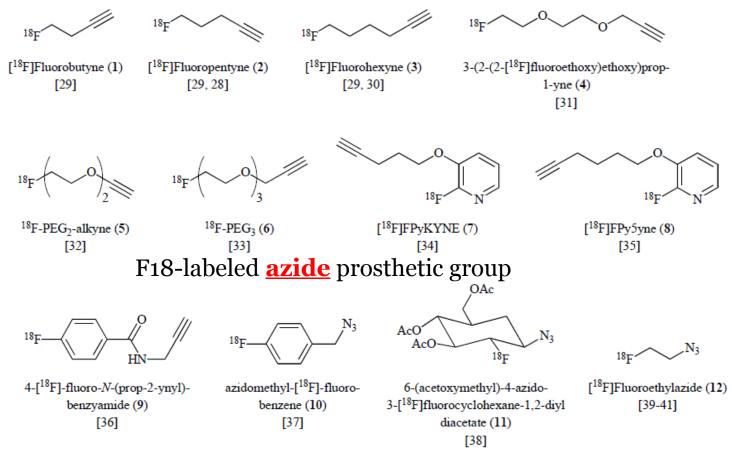
Prosthetic group: Alkyne and azide


Click Chemistry

- 1. Mild
- 2. Large exotherm (driving force)
- 3. Stereospecific
- 4. High yielding
- 5. No side products
- 6. Final product is stable

Examples of Click Chemistry

- 1,3 dipolar Huisgen cycloaddition
- Thiol-ene Click reaction
- Inversed electron demand Diels Alder
- Nucleophilic substitution on strained rings


1,3-dipolar Huisgen cycloaddition

1,3-dipolar Huisgen reaction for peptide labeling

Terminal alkyne and azide \rightarrow triazole (both precursors and product are stable; not easily cleaved)

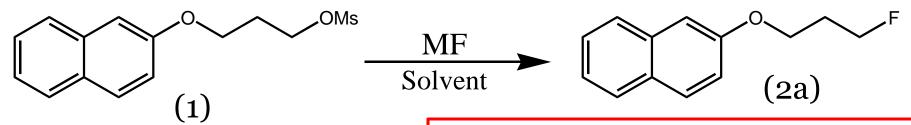
F18-labeled terminal <u>alkyne</u> prosthetic group

Wangler B. et al. Curr Med Chem. 2010, 17, 1092

NEW LABELING METHODOLOGIES

Ideal F18 Radiochemistry?

Parameter	Current	Ideal (Future?)
Time	40~300 mins	ASAP
Yield (RCY)	1~60%	AHAP
Selectivity	Many side products	Single product
Purification	HPLC	None or cartridge
Reaction requirement	Azeotropic drying	Reaction in aqeuous
Reaction condition	Basic, high temp, organic solvent, high pH	In aqueous, mild temp and pH
Multistep	1-3 steps	1 step and direct

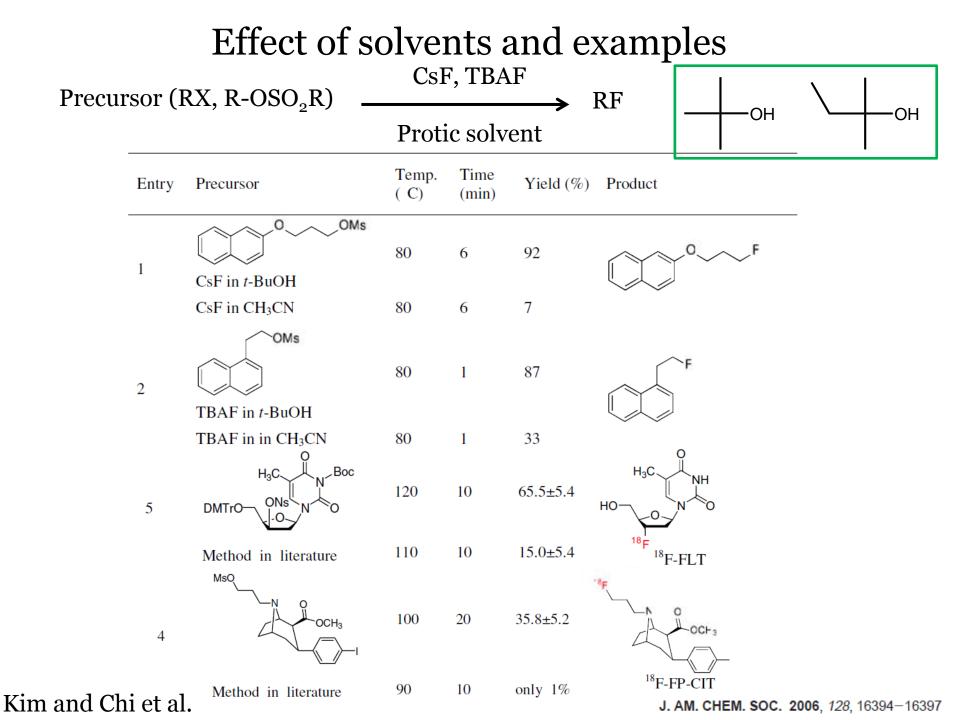

New F18 Labeling Chemistry

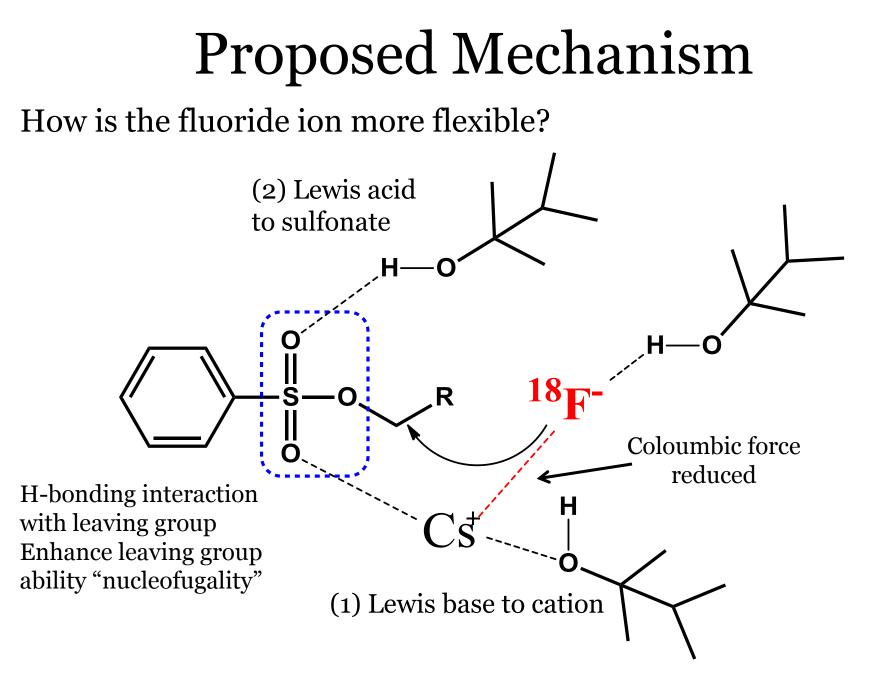
Features	New Chemistry
Higher yield and selectivity	Bulky protic solvent
	Diaryliodonium salts precursor Transition metal catalysis
Labeling in aqueous [18F]fluoride ion solution	Al-F
	Arylboronic acid
	Enzymatic fluorination
	Si-F
Direct labeling complex molecules	Si-F
	Transition metal catalysis
HPLC-free	Solid phase radiosynthesis
	Fluorous phase synthesis

Aliphatic substitution: (1) Bulky protic solvent; (2) ionic liquid as solvent

HIGHER YIELD AND SELECTIVITY

(1) Fluorionation in Protic Solvents



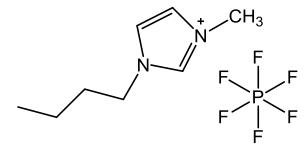

+ alcohol (2b) + alkene (2c) + ether (2d)

yield of product^b (%)

entry	solvent	MF	temp (°C)	time (h)	1	2a	2b	2c	2d
1	t-BuOH	CsF	80	6	trace	92	-	-	7
2	n-BuOH	CsF	80	6	4 ^c	64	-	-	30
3	CH₃CN	CsF	80	6	91	7¢	-	trace	-
4	DMF	CsF	80	6	33	48	8 ^c	9°	-
5	1,4-dioxane	CsF	80	6	94	-	-	-	-
6	benzene	CsF	80	6	97	-	-	-	-
7	tert-amyl alcohol	CsF	80	6	-	93	-		5(5°)
8	tert-amyl alcohol	CsF	90	2.5	-	94	-	-	4(5°)
9	t-BuOH	CsBr	80	6	94	4 ^d	-	-	trace
10	CH ₃ CN	CsBr	80	6	68	32 ^d	-		-
11	tert-amyl alcohol	RbF	90	24	13	76	-		9
12	tert-amyl alcohol	KF	90	24	90	trace	-		7¢

J. AM. CHEM. SOC. 2006, 128, 16394–16397 Cold reaction, NMR yield

Lee et al. *J Phys Chem A*, **2007**, 111,


(2) Fluorination in Ionic Liquid

Definition:

- Salt in liquid state at room temperature
- Low vapor pressure
- As green solvent;
- ion-pairs moderate conductivity,
- AQ and organic miscibility → functionalization, anion
 Table 1. Fluorina
- catalytic effect

<u>Ionic liq in Nucleophilic</u> <u>fluorination</u>

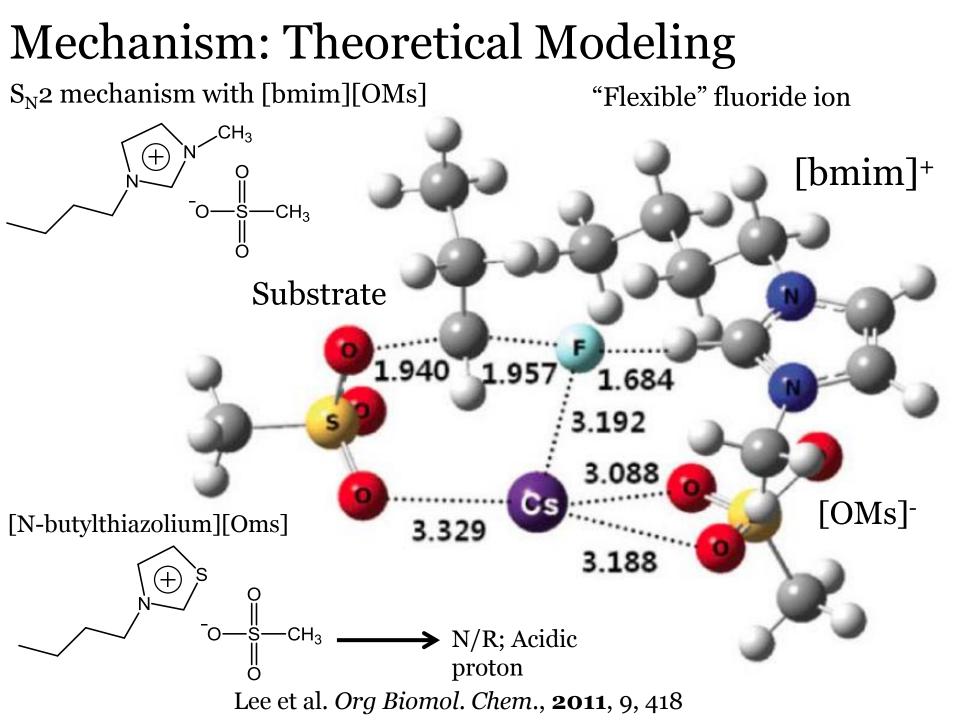
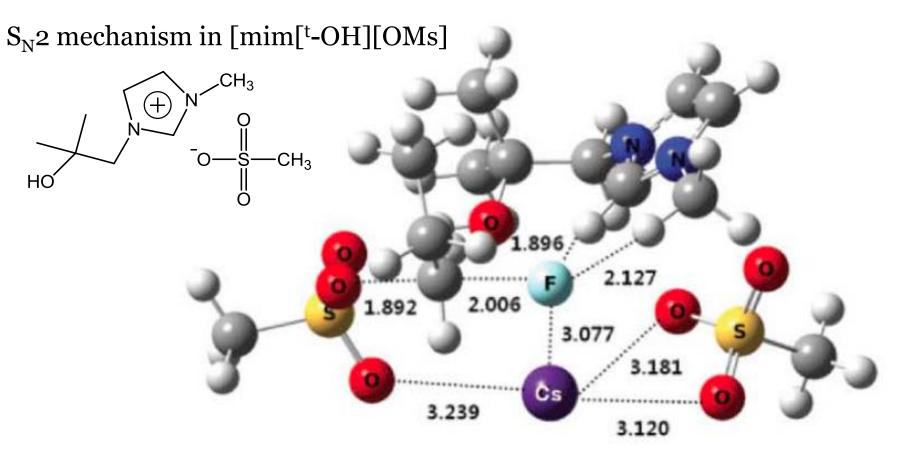

- Water tolerant < 10%
- Eliminate need for azeotropic drying
- Accelerate reaction rate
- Improve selectivity → Reduce side products

Table 1. Fluorinations of Mesylate **1** with KF under Various Reaction Conditions^{*a*}

<u>hilic</u>			Ms 5eq. [bmim]	KF, solvent][BF4], 100 °C	ſ°	F + alcohol 2b + alkene 2c			
10%		[bmim][BF₄] mL	CH₃CN	H ₂ O	raction	yie	eld of pr	oduct (%	6) ^b
	entry	(equiv)	(mL)	(<i>u</i> L)	time (h)	1	2a	2b	2c
or azeotropic	1	5	_	0	2	_	85	_	10
	2	5	_	90 (5 equiv)	1.5	_	92	_	_
	3	3.2	1.6	90	1.5	_	93	trace	_
on rate	4	1.6	3.2	90	1.5	_	94	_	_
$ty \rightarrow Reduce$	5	3	1.5	500	1.5	_	88	6	_
ity / Reduce	6	1	4	90	1.5	_	92	_	_
	7	0.57 (3)	4.4	90	3	_	91	trace	_
	8	0.19(1)	4.8	90	6	_	89	trace	_
~ 11 1	9	0.1 (0.5)	5	90	12	trace	84	8	trace
Controlled exps	10	—	5	0	24	86	trace	—	—
w/o IL; low yield	11	18-crown-6 (2)	5	0	24	53	40	—	_


 a All reactions were carried out on a 1.0 mmol reaction scale of mesylate 1 using 5 mmol of KF at 100 °C. b Isolated yield.

Protic alcohol and IL in ONE molecule (3) MF $(4a)$ $(4a)$									
					yield ^{b}	(%)			
CH ₃	entry	imidazolium salt	equiv	3	4 a	4b	4 c		
(+) N $(+)$	1	[bmim][OTf]	0.5	80	18	2	_c		
	2	$[bmim][BF_4]$	0.5	73	24	3	_		
	3	[bmim][OMs]	0.5	64	$32(30)^d$	4	_		
$\sim \sim \sim \circ$ O- \S -CH ₃	4	2a	0.5	-	$100 \ (97)^d$	—	-		
. HO´. ``	5	2b	0.5	11	85	3	-		
Ö.	6	2c	0.5	28	70	2	-		
	7	2d	0.5	42	56	2	-		
	8 ^e	2a	3.0	_	93	7	trace		
Protic alcohol	9f	<u>2a</u>	3 mL	_	84	10	6		
T · 1· · 1	10 ^g	t-BuOH	0.5	77	$23(22)^d$	-	-		
	11^{h}	[bmim][OMs]/t-BuOH	0.5/0.5	58	$40(37)^d$	2	trace		
Better Lewis base	12^i	2a	0.5	_	83	5	12		

Chi et al. *Org Lett.* **2008**, 10, 733

Synergestic Effect of Ionic Liquid and Tertiary Alcohol

Computational modeling of the ionic liquid-alcohol, Cs-F and substrate

- Lower energetic barrier
- Retard acidic H—F interactions
- Acidic OH interacts with LG
- Retards E2 side reaction

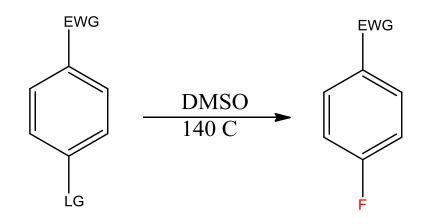
Aromatic substitution: (1) Iodonium salt precursor, (2) Transition metal catalysis

HIGHER YIELD AND SELECTIVITY

Conventional n.c.a. Aromatic Substituion

 $+N_2 + BF_3$

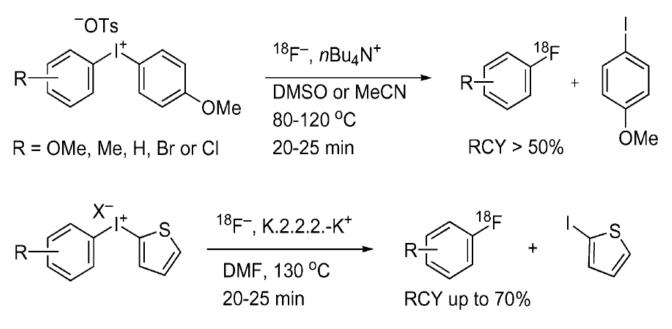
Balz-Schiemann reaction \mathbb{N}_{P_2} $\mathbb{N}_{P_2}^{\mathbb{N}_{P_4}} = \mathbb{P}_{P_4}^{\mathbb{N}_{P_4}}$


 HBF_4

NaNO₂

<u>Limitation</u>

- Harsh condition
- High temperature
- low yield



- Electron deficient arenes only
- High temperature
- Low yield

(1) Diaryliodonium Salt Precursor

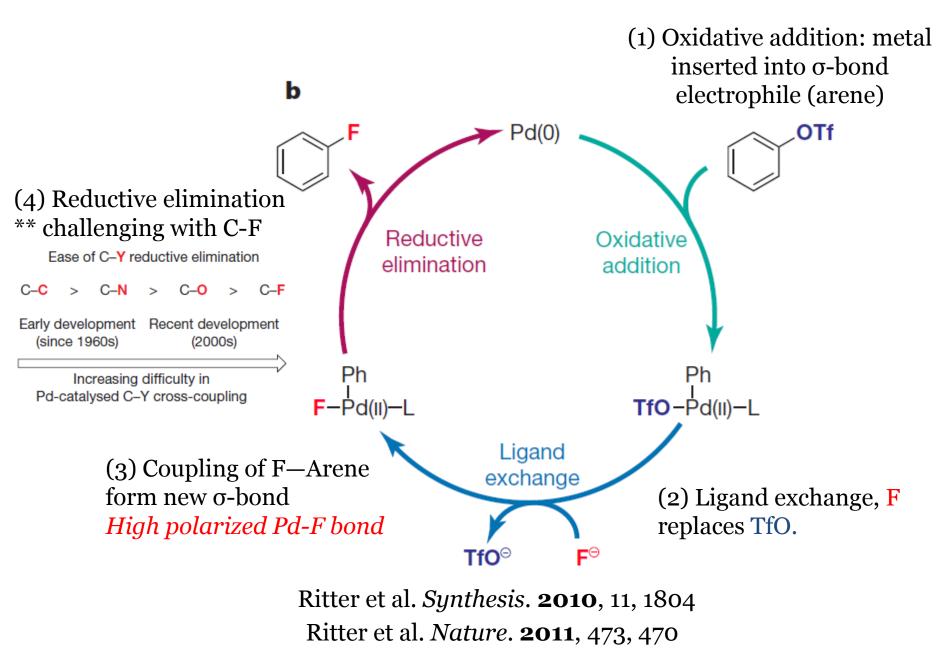
- Electron rich and deficient arene
- Ortho effect; substitution directed to the least electron-rich ring (chemoselective)

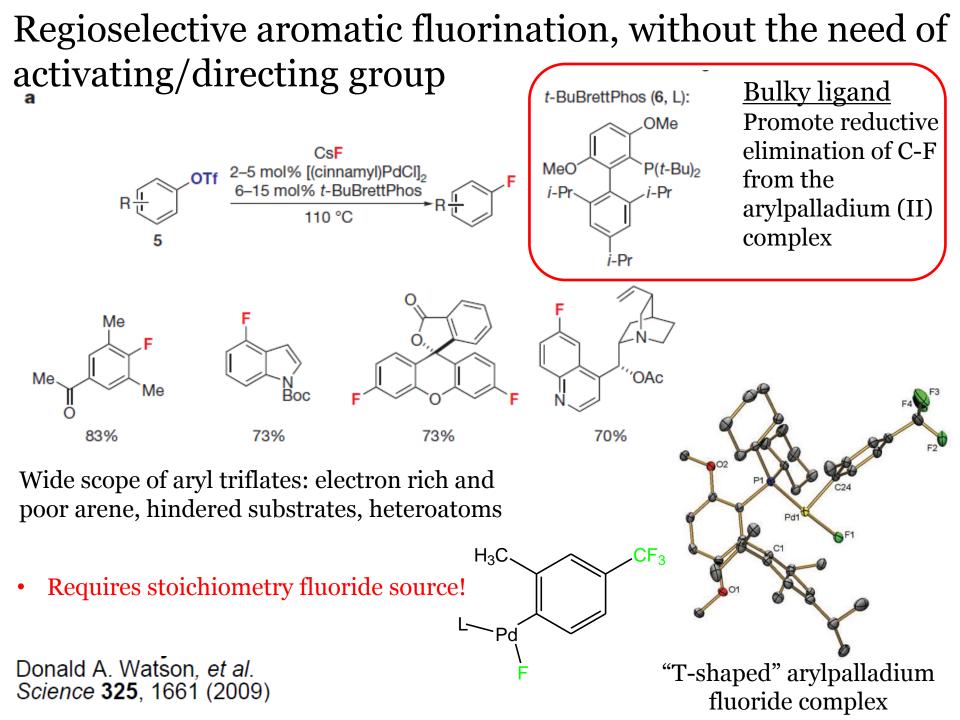
R = H, 4-Me, 2-OMe, 3-OMe, 4-OMe, 4-OBn, 4-I, 4-Br, 4-Cl X = Br, I, OTs, OTf

** Handling of diaryliodonium salt

Rules

Table 2 [18F]Fluoroarene synthesis


	Diaryli	Diaryliodonium salts 5					De l'estere	Product ratio	
Run	Cpd.	R-aryl	R'-aryl	A^-	Salt	Radiochem. yield ^a (%)	Radiochem. loss ^b (%)	3A	3B
1	a	C ₆ H ₅	C ₆ H ₅	CF ₃ SO ₃ ⁻	KF-APE 2.2.2	80	NM	1.00	_
2	b	C ₆ H ₅	4-CH ₃ OC ₆ H ₄	CF ₃ SO ₃ ⁻	KF-APE 2.2.2	96	NM	1.00	0
3	с	C ₆ H ₅	4-Bu'OC ₆ H₄	CF ₃ SO ₃ ⁻	KF-APE 2.2.2	95	NM	1.00	0
4	d	C ₆ H ₅	4-BrC ₆ H ₄	CF ₃ SO ₃ ⁻	KF-APE 2.2.2	95	NM	0.30	0.70
5	e	C ₆ H ₅	4-IC ₆ H₄	CF ₃ SO ₃ ⁻	KF-APE 2.2.2	94	NM	0.15	0.85
6	f	C ₆ H ₅	4-FC ₆ H ₄	CF ₃ SO ₃ ⁻	KF-APE 2.2.2	92	NM	0.10	0.90
7	g	C,H,	2,4,6-(CH ₂) ₂ C ₆ H ₂	CF ₃ SO ₃ ⁻	KF-APE 2.2.2	96	NM	0	1.00
8	h	2-CH ₃ C ₆ H ₄	4-Bu ^t C ₆ H ₄	CF ₃ SO ₃ ⁻	CsF	60	20	0.80	0.20
9	i	$2-CH_3C_6H_4$	4-CH ₃ C ₆ H ₄	CF ₃ SO ₃ ⁻	CsF	50	26	(1.00) ^c	
10	j	$2-CH_3C_6H_4$	4-CH ₃ C ₆ H ₄	CF ₃ CO ₂ ⁻	CsF	45	22	$(1.00)^{c}$	
11	k	$2-CH_3C_6H_4$	4-CH ₃ OC ₆ H ₄	CF ₃ CO ₂ ⁻	CsF	64	9	1.00	0
12	1	3-CH ₃ C ₆ H ₄	4-CH ₃ OC ₆ H ₄	CF ₃ SO ₃	CsF	66	10	1.00	0
13	m	2-CH ₃ C ₆ H ₄	2,4,6-(CH ₃) ₃ C ₆ H ₂	CF ₃ SO ₃	CsF	65	11	0.20	0.80
14	n	2,4,6-(CH ₃) ₃ C ₆ H ₂	2,4,6-(CH ₃) ₃ C ₆ H ₂	CF ₃ SO ₃ ⁻	CsF	50	20	(1.00) ^c	
15	0	2,4,6-(CH ₃) ₃ C ₆ H ₂	4-CH ₃ OC ₆ H ₄	$CF_3CO_2^-$	CsF	67	8	1.00	0
16	р	3,5-(CH ₃) ₂ C ₆ H ₃	4-CH ₃ OC ₆ H ₄	CF ₃ SO ₃ ⁻	CsF	45	19	1.00	0
17	q	$4-(CH_3)_3CCH_2C_6H_4$	$3-CH_3OC_6H_4$	CF ₃ SO ₃ ⁻	CsF	66	9	1.00	0

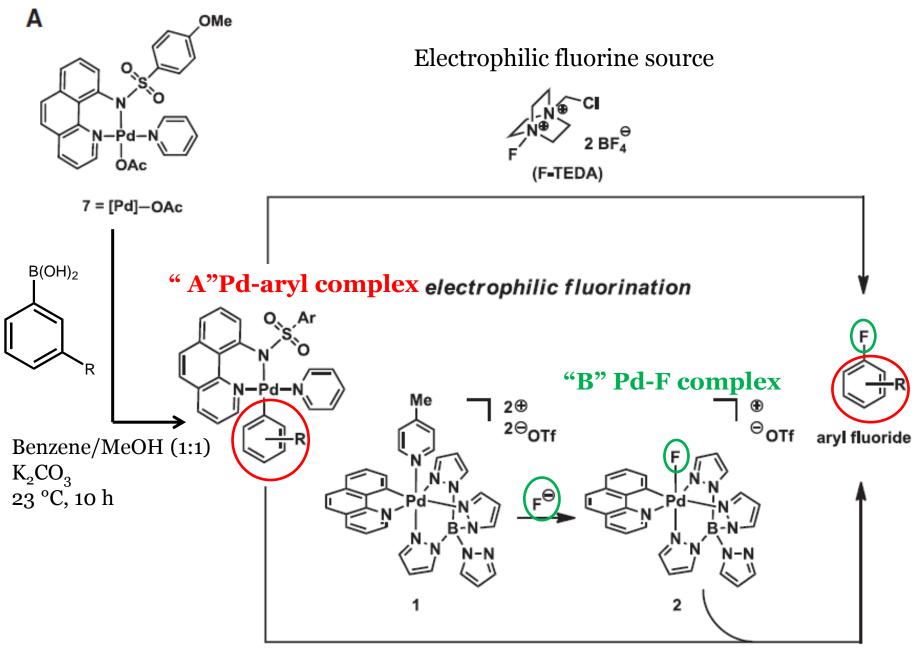

Substitution favored on the *most* electron deficient arene. Strong EWG (alkyl, alkoxy, hydroxyl)

Mixtures when arene is moderately activated (eg.: F, Br, I)

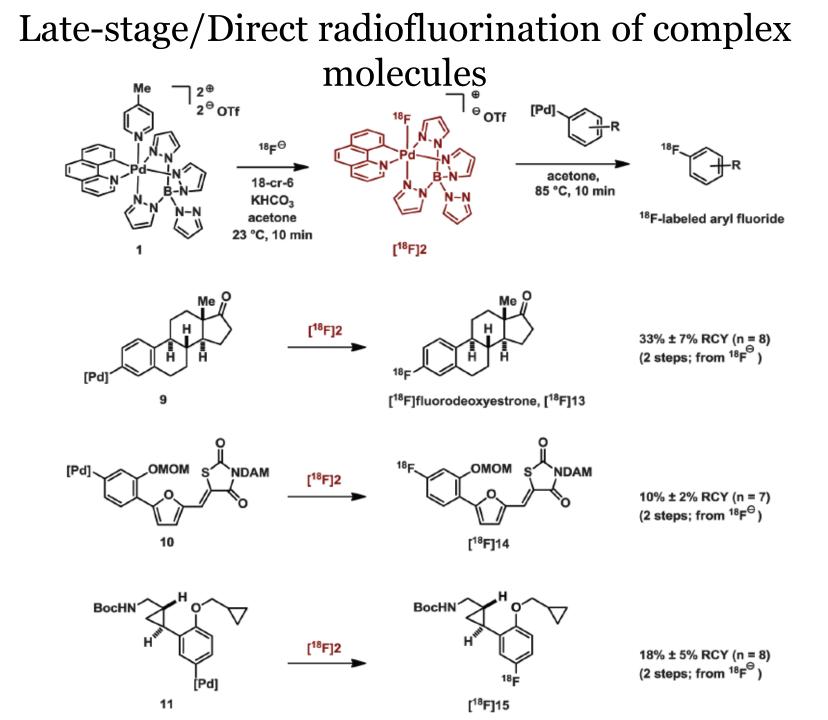
N/R when both arenes are substituted

(ii) Transition metal catalysis for C-F

Revisit Fluorination Methods


Electrophilic fluorination

- F₂ source- difficult to handle
- Low specific activity; dilution with F19
- Highly reactive towards arenes


Nucleophilic fluorination

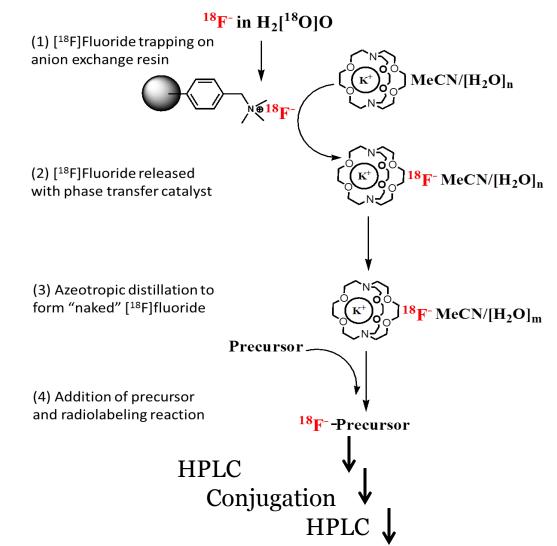
- F⁻ ion source in H2O, ease of handling
- High specific activity
- Water hydration; need activation
- Not reactive to unactivated arenes

Fluoride Ion Reversal in Polarity

Ritter et al. Science 2011, 334, 639.

N.C.A RADIOLABELING IN AQUEOUS SOLUTION

Eliminate azeotropic drying using new F18-prosthetic group chemistry

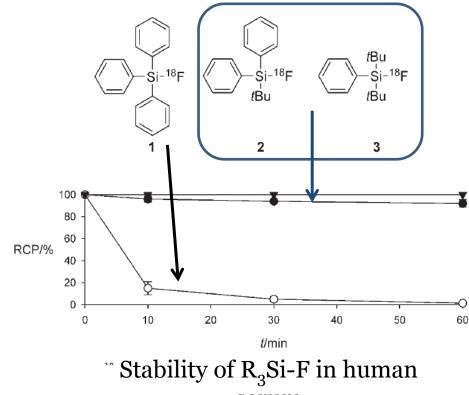

Fluorination in Aqueous media Conventionally

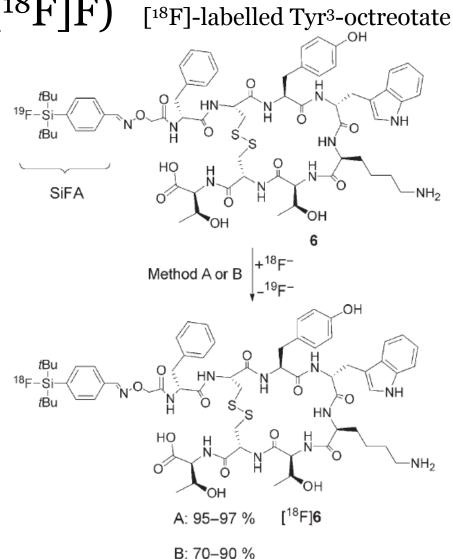
Radiolabeling peptide/protein with n.c.a F18

- 1. Si-F chemistry
- 2. Al-F chemistry
- 3. Enzymatic fluorination

Features:

- Preparation of *F18-prosthetic group* directly in aqeuous media.
- Or *direct labeling* with F18 ion in aqueous.
- Eliminate lengthy azeotropic drying steps
- Reduce radiolabeling time

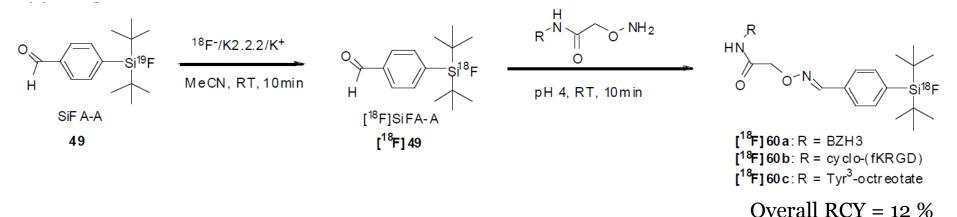


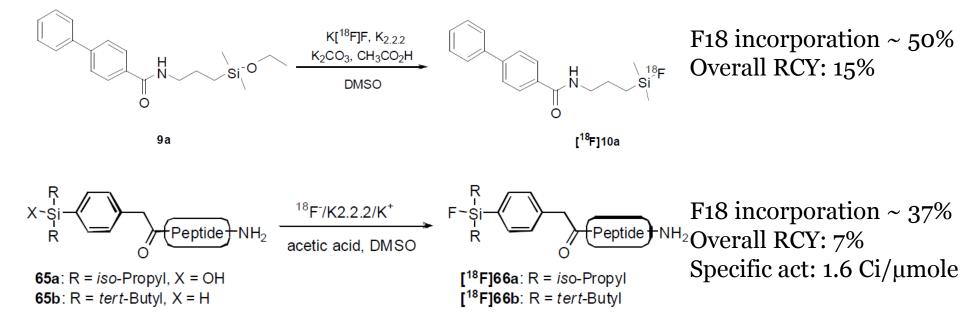

Organofluorosilanes (Si-[¹⁸F]F)

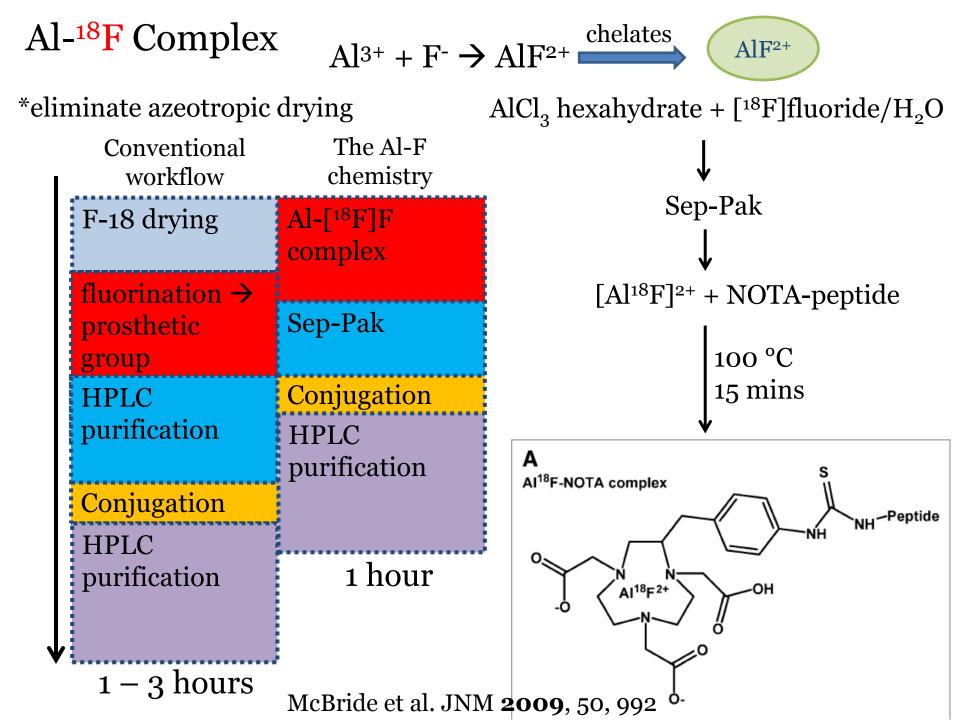
Schirrmacher et al. App Sci. 2012. 2, 277

Si-F bond: 153-167 kcal/mole Mild reaction conditions Extremely specific No by-product; cartridge purification Labeling in directly in $[^{18}F]F^{-}/[^{18}O]H_{2}O$

Isotopic exchange; exchange efficiencies depend on substituent on aromatic ring




Method A: [¹⁸F]F⁻/K₂₂₂/K⁺, MeCN, RT, 10-15 mins RCY: 95 – 97% Method B: [¹⁸F]F⁻/[¹⁸O]H₂O, MeCN, 95 °C, 30 mins RCY: 70 – 90% Specific act ~ 108 mCi/µmole

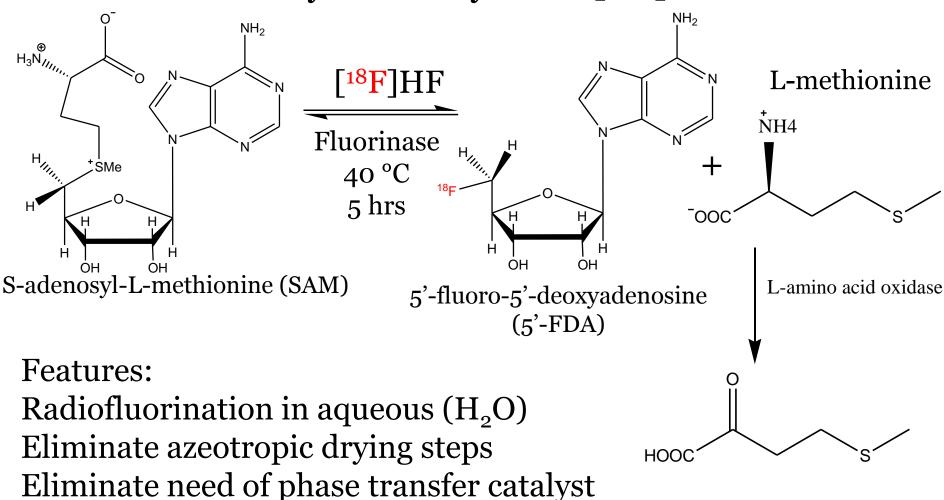

Organofluorosilanes in Radiochemistry

(i) Isotopic exchange method; 2 steps \rightarrow improved specific activities ~ 1 Ci/umole

(ii) Organosilane substrate with hydroxyl and ethoxyl leaving group

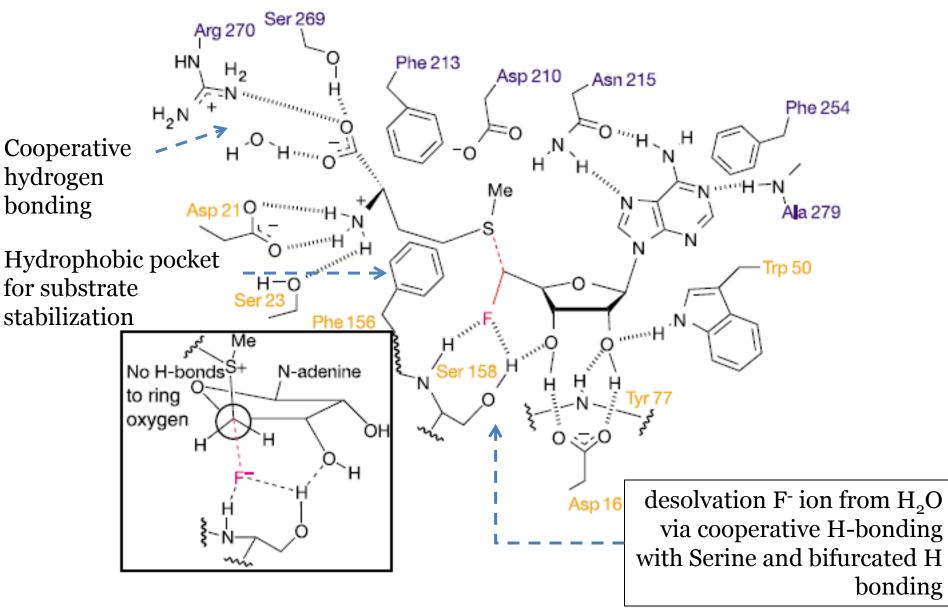
Improved ¹⁸F-Labeling with [Al-F]²⁺ chelate complex

PEPTIDE	Structure	Maximum ¹⁸ F-Labeling Yield	
IMP449		44%	
IMP460		5.8%	 <u>Optimization</u> 1. Reduced volume 2. Concentration of chelates (>40 nmoles)
IMP461		31%	 Concentration of peptide (>10 nmoles) Labeling time (>5 mins) Labeling temp (>100 C) pH 4~5 (yield 70%)
IMP467		87%	

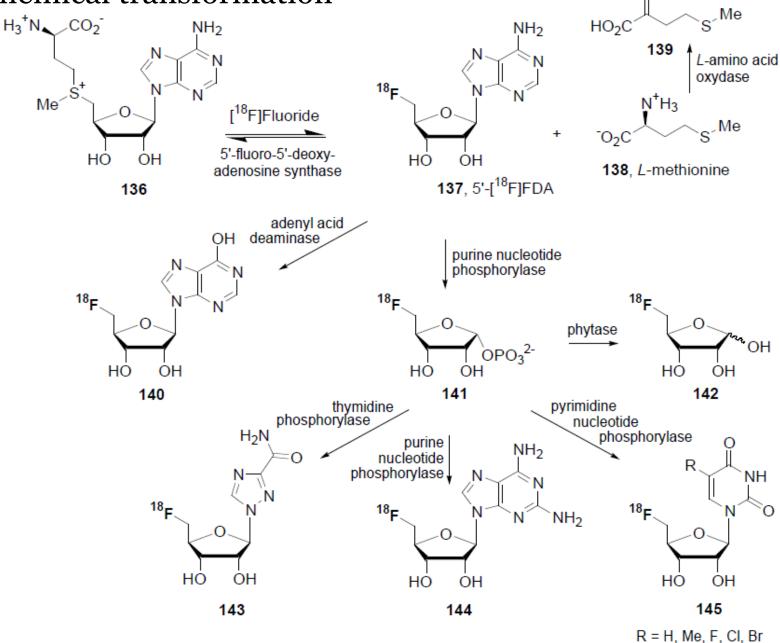

McBride et al. *Bioconj Chem.* **2010**, 21, 1331-1340

Comparison to other methods

						Wester/		
Author	Schirrmacher	Hohne	Marik	Glaser	Poethko	Mading	Becaud	McBride
							Direct	
Chemistry	Silicon	Silicon	Click	Click	Oxime	Amide	substitution	Al-F
Rx steps	2	1	2	2	2	many	1	1
Process time (min)	40	115-155	30	65	75	60	35	30
Yield (%)	55	13	79	50	40	10	57	51
HPLC-purification			Distillation+	1+				
steps	1	1	Sep-Pak	distillation	1	2	1	SPE
Specific activity								
(Ci/umole)	6-18	1.8	>1	high	high	high	2	3


McBride et al. *Bioconj Chem.* **2010**, 21, 1331-1340

Enzyme Catalyzed C-[18F]F

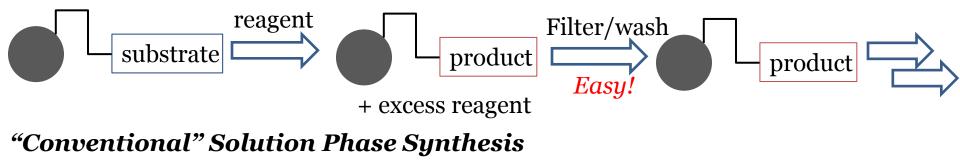

Results: Without oxidase co-enzyme: 1% RCY 5hr With oxidase co-enzyme: 95% RCY 1 hr

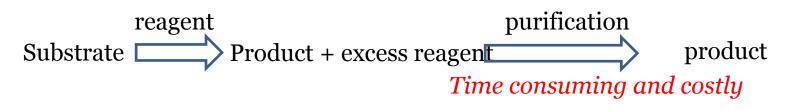
Mechanism of fluorinase

Representation of enzyme active site

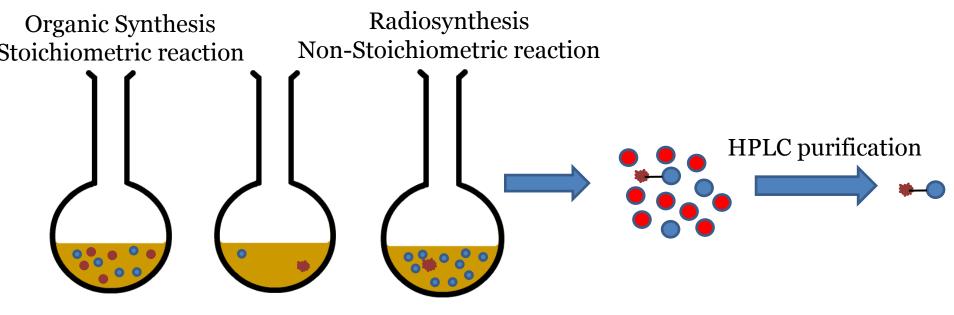
Derivatives of F18-labelled 5'-fluorodeoxyadenosine via biochemical transformation

HPLC-FREE APPROACHES

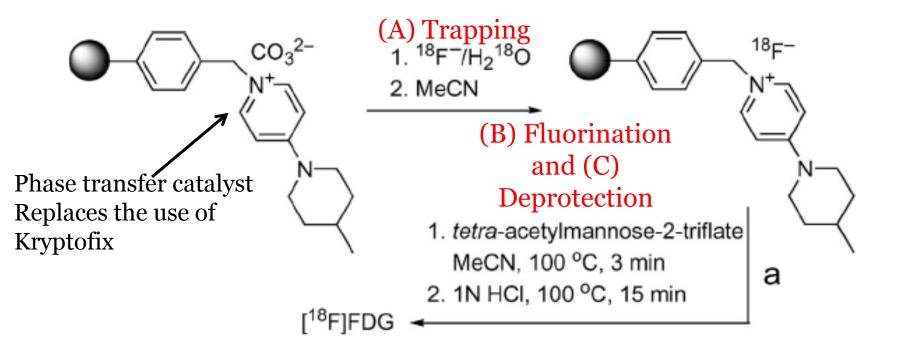

(1) Polymer supported reagent, (2) Polymer supported precursors,(3) fluorous phase detagging

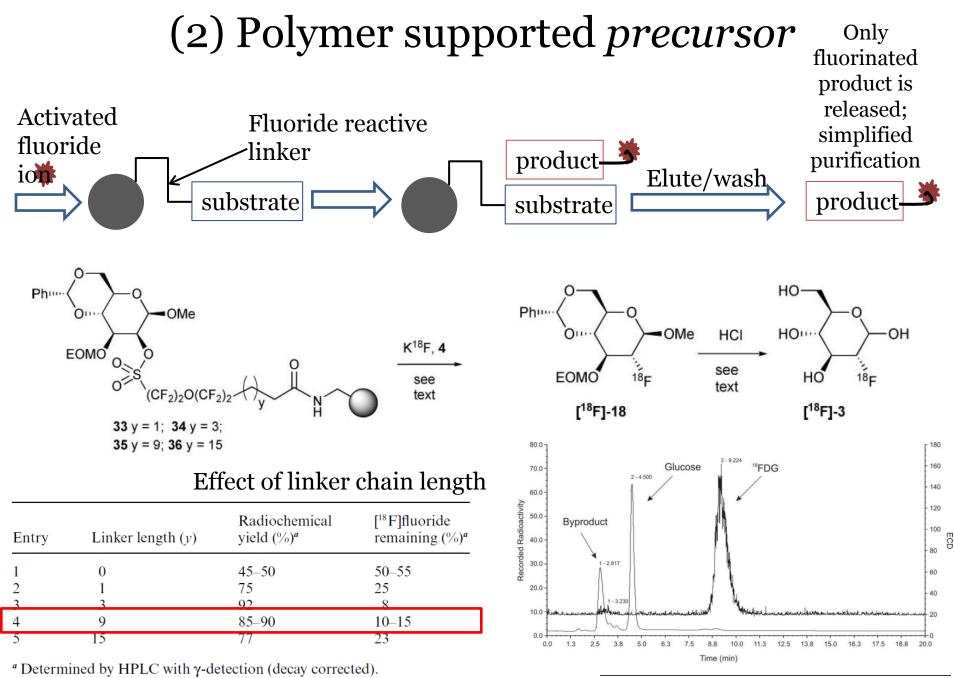

Polymer Supported Radiosynthesis

Advantages:


- 1. Synthetic intermediate don't have to be isolated
- 2. Large excess of reagents are use to drive reaction forward, without complicating purification
- 3. Reagents simply wash away in each step
- 4. Selective cleavage \rightarrow simplify purification
- 5. Support hazardous reagents \rightarrow increase safety
- 6. Amenable to automation

Solid Phase Synthesis

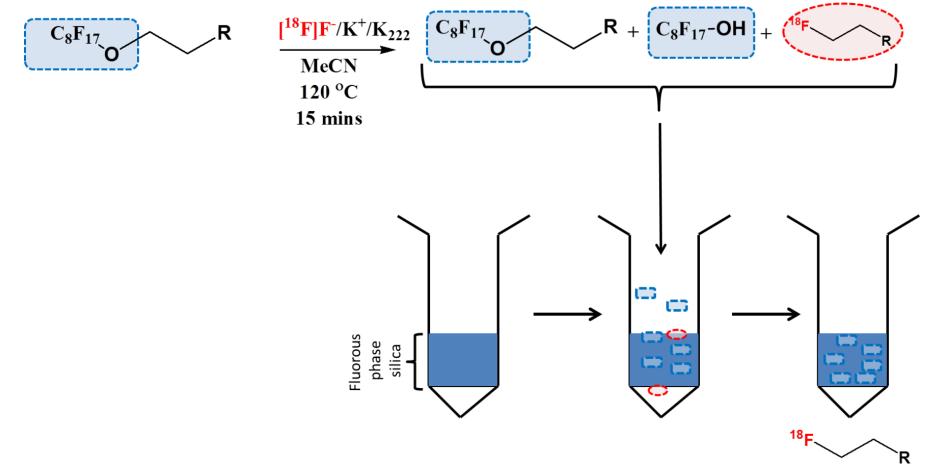

Implication of Non-Stoichiometry Reactions in Radiochemistry


[[18F]fluoride] ~ nM [precursor] ~ mM

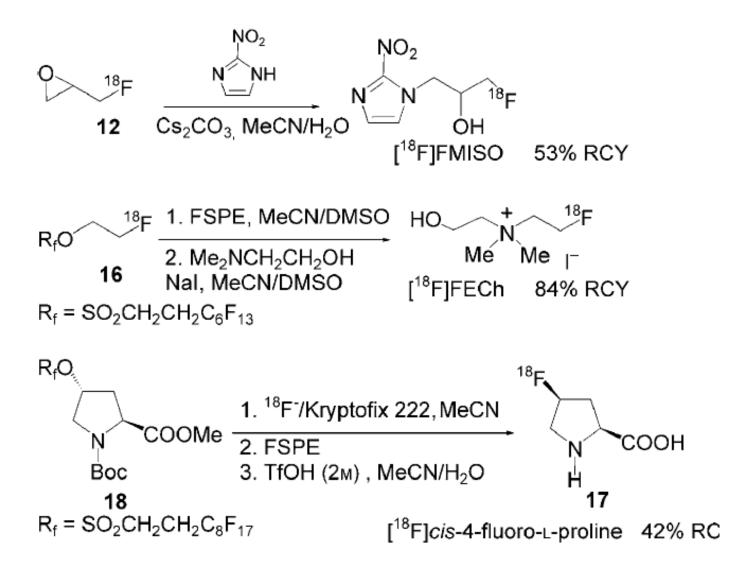
(a) Increases reaction kinetics in a short reaction time(b) Complicates purification

(1) Polymer supported *reagent*

Phase transfer catalyst= 4-aminopyridinium salt supported on polymer support; <u>eliminate</u> the need of using the toxic Kryptofix; simplify purification



Org. Biomol. Chem., 2009, 7, 564-575


(3) Fluorous phase detagging

** Solution phase reaction kinetics

** Simplified purification; separation based on fluorous vs non-fluorous compound

Examples of PET probes synthesized via fluorous detagging approach without HPLC purification

****** Reduction in specific activities

Selected References

[1] L. Cai, S. Lu, and V. W. Pike, "Chemistry with [18F]Fluoride Ion (Eur. J. Org. Chem. 17/2008)," European Journal of Organic Chemistry, vol. 2008, no. 17, pp. 2843-2843, Jun. 2008.

[2] D. W. Kim, H. J. Jeong, S. T. Lim, and M. H. Sohn, "Recent Trends in the Nucleophilic [18F]-radiolabeling Method with No-carrier-added [18F]fluoride," Nuclear Medicine and Molecular Imaging, vol. 44, no. 1, pp. 25-32.

[3] T. Furuya, A. S. Kamlet, and T. Ritter, "Catalysis for fluorination and trifluoromethylation," Nature, vol. 473, no. 7348, pp. 470-477, May 2011.

[4] Linjing Mu, P. A. Schubiger, and S. M. Ametamey, "[18F]Fluorosilicon- and [18F]Fluoroboron-based Biomolecules for PET Imaging," Current Radiopharmaceuticals, vol. 3, no. 3, pp. 224-242, Jul. 2010.